
PROGETTAZIONE DI

SISTEMI ORIENTATI

AGLI OGGETTI (OOD)

Michele Marchesi

michele@diee.unica.it

Dipartimento di Ingegneria Elettrica ed
Elettronica

Università di Cagliari

© Michele Marchesi, 2012 OOD - 3 1

Agile OOA & OOD

The analysis phase has the goal to understand and
specify system requirements.

This is accomplished building models of the system
that are then used as starting point for the design of
the system architecture.

The main issues of OOA are:

1. Understanding the system to be built.

2. Managing the complexity partitioning the system
into subsystems.

3. Documenting the work done, in such a way that
this documentation helps understanding the system.

4. Developing models of the system, also using
graphic notations, that will ease system design and
coding.

5. Formally specify the system, enabling to write a
binding contract for customers and developers (let's
take this apart!).

© Michele Marchesi, 2012 OOD - 3 2

Agile OOA & OOD

The first four issues deal with intermediate steps
from requirement elicitation to system
implementation.

These steps do not add tangible value to the
customer, in the sense that OOA does not directly
yield working software.

So, OOA is a transitory phase, essential to system
development but not a goal to itself.

OOA analysis techniques:

Incremental delivery based on feature implementation.
Add more and more features, in short iterations.

Interactive analysis using CRC method, maximizing
communication. Do not record analysis results, but put
them into working code as soon as possible.

Spike solution (disposable working prototypes).

The main documentation medium is code, which must
be written in proper, self-documenting style. UML
drawings should be added only if the benefit of having
them is greater than the cost of creating them and
keeping them aligned with the code.

© Michele Marchesi, 2012 OOD - 3 3

Agile OOA

In a nutshell, agile development techniques
obviously do perform analysis, but:

they do not try to perform an up-front complete
analysis of the system;

they get feedback from the customer on the
validity of the analysis and design, implementing
the analysis models as soon as possible, also with
the help of throw-away prototypes, if needed;

they do not consider analysis models and
documentation a goal in itself, but keep and
maintain them only if really needed.

© Michele Marchesi, 2012 OOD - 3 4

OOD Main Subsystems

The typical sub-systems of an OO software
application are:

The object model: the kernel of the system,
where key processing takes place. It
is directly derived from OOA model.
With respect to OOA, the OOD model
gives details on relationships
implementation, interface
specification and data structures.

The human interaction component (HIC):
the objects of the user interface.
These objects are the windows and
the widgets of the GUI, and the
applications able to take user inputs,
to run the requested processing and
to show the results to the user. These
applications are themselves objects,
able to access and use the objects of
the model.

The data management component
(DMC): the objects whose
responsibility is to permanently store
and to retrieve the data.

© Michele Marchesi, 2012 OOD - 3 5

The system interaction component (SIC):
the interface with external devices,
network and the Internet.

© Michele Marchesi, 2012 OOD - 3 6

OOD Main Subsystems

© Michele Marchesi, 2012 OOD - 3 7

OK a proseguire?

GUI

Modello

Applicazioni

Database

LAN
Internet

Dispositivi

(dall'OOA)

HIC

PDC

DMC

SIC

Key OOD principles

Abstraction
The world is very complex, and that every object in
the world is deeply linked to many other objects.

If we would consider in detail every aspect of a
single “thing” of the world, including interrelated
things and without limitations, we would end to
consider the whole universe!

This would be perhaps sensible for a mystic, but it
would impede the development of any science.

Abstraction is the tool enabling us to overcome this
problem.

Applying abstraction, we consider only the aspects
of an entity that are relevant to the problem at hand,
neglecting the others.

A system, or a module, may be viewed at various
levels of abstraction. At the highest levels, only the
key, synthetic details are considered, at lower levels
more details can emerge, specific of the aspect
under consideration.

© Michele Marchesi, 2012 OOD - 3 8

For instance, a train...
Abstraction The object Train is seen as:
Highest level A train represents in the system a real

train, tracked by the system or
simulated.

Lower level,
focusing on data
structure

A train has an unique identifier, knows
its maximum speed, its typical
acceleration and deceleration, the track
section it is positioned, etc.

Lowest level,
focusing on data
structure

Data structure of a train (instance
variables):
string trainId; // Unique
 identifier of the train
float maxSpeed; // Maximum
 speed in Km/h
float acceleration; // Typical

 acceleraition in m/s2

Lower level,
focusing on
permanent
memorization

The data of the trains are stored on a
file in a given format.

Lower level,
focusing on
simulation

The train knows the track section its
head is positioned on. The train can
compute the time it takes to cover a
given length, starting from its current
speed. …

… …

Scale

© Michele Marchesi, 2012 OOD - 3 9

The concept of scale is related to levels of
abstraction.

A system can be viewed at different scales, like a
geographic map.

A system can be represented at the highest level as a
set of sub-systems exchanging information among
them.

At a lower level, these sub-systems can be expanded,
considering the sub-sub-systems they are composed of.

Then, each of these sub-sub systems can in turn be
expanded, showing the modules it is composed of.

Eventually, each single module can be expanded and
represented, for instance in form of public interface
and internal representation.

When applying scale, we consider the same aspect
of the system, but at different abstraction level.

The notations used to graphically show the analysis
or design of a system usually allows to look at the
system at different scales, thus facilitating
understanding the underlying model.

© Michele Marchesi, 2012 OOD - 3 10

Iterative Refinement

Iterative refinement is a design strategy originally
proposed by Wirth [1971] in the context of
procedural programming, but which can be applied
also to OOD.

In the original definition, a program is implemented
by successively refining levels of procedural detail:

We start from the main procedure that is the “top” of
the whole system, or with a top level procedure to
implement.

Using procedural abstraction, we decompose this
procedure into more detailed instructions and lower-
level procedure calls.

These will be decomposed in the next step, and so on.

The successive decomposition of specification
terminates when all instructions are expressed in term
of the underlying programming language.

As procedures are refined, so the data they operate
on may have to be refined

Every refinement step implies some design
decisions, considering alternative solutions.

© Michele Marchesi, 2012 OOD - 3 11

OO Iterative Refinement

In an OO system, iterative refinement may be
applied both to class hierarchy definition, and to
method design and implementation.

In the definition of class hierarchies, we start
considering the higher classes in the hierarchy, for
instance class Person in a hierarchy of human roles.

When the need of more specialized classes appears,
we add them to the hierarchy, properly restructuring
the attribution of data and methods, and so on
iteratively adding more and more specialized
classes.

For instance, an Employee and a Customer class
could emerge, adding specific behavior to a generic
Person. Then, a Manager and a Secretary classes
could add behavior to Employee, and TopManager
to class Manager, an so on.

The OO system is also based on methods at
different detail levels, and the design proceeds from
the highest level methods to the lower level one,
following iterative refinement.

© Michele Marchesi, 2012 OOD - 3 12

Information Hiding

A module must hide its internal implementation
from all other modules.

This principle, to be followed when designing a
module, was introduced by Parnas [1972] and is
called information hiding.

A module must be accessed only through its public
interface, and this access should depend in no way
on its implementation.

This means that changing the implementation of the
module without changing its interface should have
no effect on the rest of the system.

No direct access should be provided to the internal
data structure, or to the private procedures of a
module.

This prescription is often violated for performance
reasons; whenever possible, other ways to improve
performance should be found.

Applying information hiding, we use abstraction to

© Michele Marchesi, 2012 OOD - 3 13

define the modules and their interfaces.

The access to internal data and procedure is strictly
controlled, and may be used also to define and
enforce consistency constraints.

For instance, it is easy to enforce the constraint that
a data must always be strictly positive, if there is
only one public function entitled to change the
value of this data.

Information hiding is a principle aimed to clearly
define the boundaries of a module for external
access.

However, it should be used as far as possible also in
the internal implementation of the module.

For instance, accessor methods (setter and getter)

© Michele Marchesi, 2012 OOD - 3 14

Implementing Information Hiding

Principle 1. Access instance variables of
objects only through accessors.

In this way:

Data consistency can be verified and enforced by
setters just in one point.

Getters may return copies of the data, and not the
data themselves, to enforce security.

If the data structure changes, only the accessors
should change. The other methods do not require
to change.

Computed values can be seamlessly used as if
they were actual instance variables.

Data access can be controlled with respect to
locks.

Data access can be logged for debugging.

© Michele Marchesi, 2012 OOD - 3 15

Principle 2. Minimize the number of public
and protected methods.

We remember that

only public methods may be called from outside a
class;

only public and protected methods may be called from
subclasses’ methods,

private methods may be called only inside methods of
the same class.

A class should perform a single, clean task,
exposing only the essential behavior to external
world.

The smaller the number of its public methods, the
looser its coupling with other parts of the system.

A class with a few public methods is easier to
understand and use. Moreover, in the case of
changes to it, it is easier to keep their interface
unchanged.

© Michele Marchesi, 2012 OOD - 3 16

Principle 3. (Law of Demeter) An object O in
response to a message M (that is, executing
method M) should send messages only to the
following receiver objects:

1. O itself,

2. objects sent as arguments of message M,

3. new objects O creates while executing
method M,

4. objects which are directly accessible in-
stance variables of O (got using getters),

5. objects which provide global services to O
(global variables).

A consequence is that local variables of a method
may only hold new objects created while executing
the method: inside a method, you should not obtain
objects but those referred to in Demeter’s Law.

Methods should operate only on objects directly
available to them, and should not obtain
intermediate object to send them messages. This is
also known as the “kill the middle-man” principle.

© Michele Marchesi, 2012 OOD - 3 17

Styles of reuse

Composition:

Additive

Projective, when the purpose of the new object is
to wrap an existing object in order to hide some
behavior and expose others.

Schemata: general structure, parameterized using
one of more abstract classes, able to generate a
specific instance

templates

interfaces

A third fundamental reuse mechanism, peculiar to
object-oriented systems, is inheritance.

With inheritance, it is possible to use polimorphism:

send a message to an object

the object will call the correct method, depending
upon its class

© Michele Marchesi, 2012 OOD - 3 18

Principles regarding inheritance

Principle 4. (Liskov's Principle of Substitution)
If a class B is "just like" a class A except for
extensions, then it should be possible to use a B
object anywhere you an use an A object. That is,
a child (subclass) should be able to be used
where ever the parent (superclass) can be used.

Design your classes to preserve this property
unless you have a strong reason to do otherwise.

Principle 5. Use inheritance only to reuse and
extend functionalities. Use inheritance only if it
reflects a relationship existing in the real-world.

Inheritance should not be used to reuse implementa-
tion (code). It should only be employed to reuse and
extend functionality. To reuse implementation, use
instead composition.

© Michele Marchesi, 2012 OOD - 3 19

Roles

An exception to Principle 5 is the case of roles.

Typical examples of roles are human roles: in a
given system, a person can play different roles.

For instance, in a university management system we
might deal with a graduate student who teaches
courses to undergraduate students, and who is also a
part-time employee of the university

The most straightforward way to design an object-
oriented model of this part of the system is to
acknowledge that Student, Teacher and Employee
are all kinds of Person:

© Michele Marchesi, 2012 OOD - 3 20

This model reflects the real world, and follows
Principle 5.

However, in this framework it is not possible to
easily accommodate our student, who is also a
teacher and an employee.

Three objects might be created, one for each
subclass, to keep track of him/her. This would
replicate three times his/her data derived from
Person, and there would be no explicit information
that the three objects refer to the same person.

The use of roles solves the problem:

© Michele Marchesi, 2012 OOD - 3 21

This also reflects the real world, since we may say that
“being student (or teacher, or employee) is a role of
person”.

Principle 6. Roles are acquired via composition,
not by subclassing.

Composition should also be used in place of inheritance
by exception:

If a new class B is like an existing class A, but with
restrictions on its behavior, then B should not be
derived from A via inheritance.

Instead, class B should contain an instance of class A
(composition).

The part of B's behavior that is correctly implemented
by A is directly delegated to A.

The remaining part of B's behavior is suitably re-
implemented by B.

© Michele Marchesi, 2012 OOD - 3 22

Low Coupling

Two modules are highly coupled when there are
many dependences between them.

Two modules are loosely coupled if
interconnections and dependences are weak.

Two modules are uncoupled if there is no
interconnection, and they are independent.

There are many ways the modules can be dependent
on each other.

In increasing coupling order, they are:

The procedures or methods of a module calls
procedures or methods defined in other modules.

The procedures or methods of a module have
parameters, explicit or implicit local variables or
return types defined in other modules.

A class defined in a module is subclass of a class
defined in another module.

One or more modules make calls to specific API
procedures of the operating system.

© Michele Marchesi, 2012 OOD - 3 23

One or more modules are interfaced to specific
devices, or make use of specific data formats and
communication protocols (I/O coupling).

Two (or more) modules access a shared area
containing global variables (common coupling).

Two (or more) modules directly access data
contained in another module (content coupling).

The two last kinds of coupling are the worst, and
should be avoided.

Content coupling clearly does not satisfy the
information hiding principle.

The other forms of coupling are unavoidable, since
a system composed only by completely independent
modules would be in fact a set of different systems.

Sub-systems and modules, however, should be
defined in such a way to minimize (the
unavoidable) coupling.

© Michele Marchesi, 2012 OOD - 3 24

Why minimizing coupling

The reasons to minimize coupling are two:

A self-contained module, making minimum use
of other modules, is simpler and easier to
implement, understand and maintain.

If the design and implementation of one or more
modules have to be changed, the impact of such a
change to other modules of the system is kept
minimum.

© Michele Marchesi, 2012 OOD - 3 25

Cohesion

A module is cohesive if it performs a single task
and if all its elements are directed toward and
essential to this task.

As with coupling, cohesion may be represented as a
“spectrum”. We should strive to have high cohesion
in every module, but this cannot always be
accomplished.

Kinds of cohesion (from the lowest to the highest):

Coincidental: a module composed by many
unrelated parts

Logical: a module is composed by logically
related parts, but with no other interactions among
them. For instance, a module aimed to manage all
forms of outputs

Temporal: elements are grouped into a module
because they are all processed within the same
limited time period.

Procedural: a module is composed by parts in
which control flows from one activity to the next.

© Michele Marchesi, 2012 OOD - 3 26

For instance, a module providing access to Web
services, and performing all the related tasks.

Communicational: all elements of a module
operate upon the same input data set and/or
produce the same output data.

Sequential: the activities of the module are
arranged such as the output of one serves as the
input to the next.

Informational: multiple functions of the same
module have access to the same data structure or
resource that is hidden within the module.

Functional: the module performs exactly one
action, or it achieves a single goal. All parts of the
module contribute to just one function, nothing
else is in the module and everything needed for
the function is in the module.

Only the last two kinds of cohesion are good, while
sequential cohesion may be acceptable.

All other forms should be avoided

© Michele Marchesi, 2012 OOD - 3 27

OO Cohesion

For OO systems, we can still define cohesion, and
strive for high cohesion.

Here we should substitute "class" for "module".

A class with the weakest forms of cohesion is a
collection of methods, that alone or together exhibit
one of the weak forms of cohesion.

A common design behavior that yields non-
cohesive classes is to use multiple inheritance to
give to a class features that are not pertinent with its
main scope.

A class is functional cohesive if it represents a
single concept, and each operation in its public
interface is functional cohesive.

OO designers should strive to create designs with
classes having maximum cohesion.

© Michele Marchesi, 2012 OOD - 3 28

Simplicity

Simplicity of design is a quality easy to state, but
really difficult to formalize and achieve.

Paraphrasing a famous Einstein's sentence, your
design should be as simple as possible, but not
simpler.

Simplicity has to do with achieving the goals of
overall design, and the goals of every module, with
the minimum number of artifacts, responsibilities,
collaborations, variables, operations, number of
instructions.

Usually, simplicity is obtained at the end of a long
trial-and-error process, using refactoring

Any intelligent fool can make things bigger,
more complex, and more violent. It takes a
touch of genius -- and a lot of courage -- to
move in the opposite direction.

© Michele Marchesi, 2012 OOD - 3 29

How to achieve simplicity

Simplicity may be achieved at various levels:

At method level, writing methods short and with
small signatures.

At module level, keeping the public interface of
the module as small as possible.

At system level:

holding the information in the modules that
need it, avoiding “middle-man” modules that
only pass information from one module to
another, without performing useful processing;

minimizing the information and control paths
between modules;

avoiding global data areas and global variables;

keeping the inheritance hierarchies as small as
possible, and putting the information and
operations at the right hierarchy level.

At every level, avoiding code duplications.

© Michele Marchesi, 2012 OOD - 3 30

The main guideline for obtaining simplicity is:

Build only the code that you need to satisfy
your present requirements, without trying to
anticipate future needs and requirements.

The right design for the software at a given time is
one that

1.Runs all the tests.

2.Has no duplicated logic.

3.States every intention important to the
programmers.

4.Has the fewest possible number of classes or
methods.

Perfection is reached not when there is no
longer anything to add, but when there is no
longer anything to take away. (A. Saint-
Exupery)

Infrastructures

© Michele Marchesi, 2012 OOD - 3 31

A common practice in software development of
new systems is to spend the first part of the project
designing and developing an infrastructure —
frameworks, services and modules that will be
useful to develop more quickly the system.

Examples of infrastructure are a framework to build
dynamic Internet pages, or a framework to ease
software localization, i.e. writing different versions
to be used in different languages.

Unfortunately, this practice has three drawbacks:

1.It does not yield immediate value to the
customer.

2.Often, it takes too long.

3.Most likely, many of the infrastructure’s features
will never be used.

In OOD, building such up-front infrastructures
should be avoided.

© Michele Marchesi, 2012 OOD - 3 32

Do not build infrastructure components and
frameworks for the first case that needs a
functionality.

The second time you need it, you will extract the
component yielding that functionality, to follow the
no-duplication principle.

In this way, the needed infrastructure will grow as it
is needed, but not more, without delaying delivering
value to the customer.

Sometimes, it is obvious that an infrastructure must
be developed up-front. In this case, follow these
tips:

Carefully scrutinize the problem, to be absolutely
sure that the infrastructure actually needs to be
built up-front.

Keep the infrastructure’s features to a bare
minimum. New features will be easily added
when needed.

Do not delay producing software able to give
immediate value to your customer.

Design By Contract

© Michele Marchesi, 2012 OOD - 3 33

Design by contract is a technique that provides a
rigorous specification of each method of a class,
and the class’s legal state, first introduced by
Bertrand Meyer.

For each significant method of a class, the designer
should state preconditions and post-conditions.

Preconditions are assumptions about inputs to the
method, and the object state just before the method
is executed, that must hold for the method to work
properly.

Post-conditions are assumptions about outputs of
the method, and the object state just after the
method is executed, that are guaranteed to hold true.

Developing software is like a contract between the
developer of the method and the developers of the
software that calls such a method.

© Michele Marchesi, 2012 OOD - 3 34

Callers must guarantee that preconditions are
satisfied when the method is called. If this is true,
the method’s developer guarantees in turn that post-
conditions are satisfied.

If preconditions do not hold, the method is
authorized not to work properly, and even to crash
the system – the caller has not honored the contract.

If preconditions hold, and even one post-condition
is not satisfied, the developer of the method may be
pleaded guilty, since he did not honor the contract.

An example: the square root function:

double sqrt(double x)

This function computes the square root of a number.

Its precondition is that the parameter x must be a
real number, and must be x >= 0.0.

Its post-condition is that the function must actually
compute the square root of its argument, within the
precision of the computer:

abs(x – sqrt(x) * sqrt(x)) <= ε

© Michele Marchesi, 2012 OOD - 3 35

Another powerful tool in design by contract are
assertions and invariants.

They are specifications of legal state of the various
classes of the system. They may include constraints
on data values and a requirement that the values
represent what they are intended to represent.

Design by contract is a powerful design tool,
particularly useful in the development of large
systems.

It helps to explicitly state assumptions about code
that often are left implicit, hindering communica-
tions and causing misunderstandings among
developers.

© Michele Marchesi, 2012 OOD - 3 36

Metaphor

“The system metaphor is a story that
everyone (customers, programmers, and
managers) can tell about how the system
works” (Kent Beck)

The Metaphor is a design practice targeted to define
in an unconventional way the OO Architecture, that
is the key classes and objects of the system, and
how they interact.

The team and the customer agree on a common
system description, and a common “system of
names” that guide development and
communication.

The metaphor must be easily understood by both
the developers and the customer.

© Michele Marchesi, 2012 OOD - 3 37

Reasons to seek a system metaphor

Common Vision: The metaphor suggests the key
structure of how the problem and the solution are
perceived. This can make it easier to understand
what the system is, as well as what it could be.

Shared Vocabulary: The metaphor helps suggest a
common system of names for objects and the
relationships between them.

Generativity: The analogies of a metaphor can
suggest new ideas about the system.

Architecture: The metaphor shapes the system, by
identifying key objects and suggesting aspects of
their interfaces. It supports the static and dynamic
object models of the system.

© Michele Marchesi, 2012 OOD - 3 38

Finding the “right” metaphor

For each system, the baseline is the naïve
metaphor:

let objects be themselves!

For instance:

a payroll system might have Employee, Union,
Pay and Check objects

a race simulator might have car, driver, race...

In this case, customer and developers agree that
the names of the system will be taken from the
problem domain

The naïve metaphor is enough when both customer
and developers have a fair, common understanding
of the problem domain.

On the other hand, when a metaphor is needed? The
answer is when there is no shared vision of the
system between customer and developers, and the
metaphor can yield this vision.

© Michele Marchesi, 2012 OOD - 3 39

Refactoring

“Perfection is attained by slow degrees; it
requires the hand of time”. (Voltaire)

“Refactoring is the process of changing a
software system in such a way that it does
not alter the external behavior of the code
yet improves its internal structure” (Martin
Fowler)

It does not alter the external behavior of the code.
Refactoring is not made to add features to the code.

It improves code’s internal structure. Refactoring is
made to make the code simpler, easier to read,
better organized, easier to modify.

Refactoring is not just cleaning code. Code is
changed (and cleaned up) in a more efficient and
controlled manner.

© Michele Marchesi, 2012 OOD - 3 40

The main benefits of refactoring

Refactoring improves the design of software:

If refactoring is continuously applied to a
software system, its architecture gradually
improves, and a good design emerges.

Another reason to refactor is because systems are
always subject to changes. If these changes are
made only locally, the code loses its structure, and
in a short time the cost of changes become
unmanageable. Applying refactoring brings again
order to the system.

Refactoring makes software easier to understand,
being aimed also to increase system readability.

Refactoring helps to find bugs

Refactoring is a kind of software inspection.

Refactoring in the long term helps your productivity

© Michele Marchesi, 2012 OOD - 3 41

When to refactor

During software development, you don’t allocate a
given time to refactor.

You refactor when you find some signals in the
code, that tell you it is time to refactor.

You are able to find such signals when you. This
happens when you are are reading the code adding
new features to the code, fixing a bug, or
performing code reviews.

The signals in the code that should trigger
refactoring are the followings:

Presence of bugs.

When it is difficult to add a new feature to the
system.

When code is obscure.

When performances must absolutely be improved.

“Bad smells” in the code.

© Michele Marchesi, 2012 OOD - 3 42

Bad smells in the code

Too much code:

Duplicated Code. The most important bad smell.

Large Method. As a rule of thumb, any method
longer than 10-12 lines of code (in Java and C++),
should be scrutinized.

Large Class. The rule of thumb is that a class
should not have more than 8-10 instance variables,
and 10-20 methods, besides accessors, constructors
and destructors.

Data class. Data classes are containers for data.
Here, the rule of not having more than 8-10 instance
variables does not apply.

“Data classes are like children. They are okay as
starting point, but to participate as a grownup
object, they need to take some responsibility”
(Kent and Fowler).

© Michele Marchesi, 2012 OOD - 3 43

Refused Bequest. A subclass does not need
methods inherited from its superclass

Feature Envy. A single method sends many
messages to the same object.

Temporary Field. An instance variable is only
used in some circumstances, depending on the value
of another variable.

Strikingly Similar Subclasses.

Expensive Set Up. The constructors, or the initiali-
zation methods of an object are very complex.

Unused Code. If there are methods, or even classes,
not actually ever used, wipe them up.

Not enough code:

Lazy Class. Small classes with too few instance
variables, or with too little code

Incomplete Library Class. Do not fear to modify
the library or the framework, adding the required
classes or methods.

© Michele Marchesi, 2012 OOD - 3 44

Not actually the code:

Comments. The need of many comments to make
the code understandable is a symptom of bad code.

Excessive Logging. Lots of logs are needed to
figure out what the code is doing.

Problems with the way the code is changing

Divergent Change. A class usually needs to be
changed in many points every time you need to
change it.

Shotgun Surgery. Changes are made to many
classes. (I.e.: parallel inheritance hierarchies).

© Michele Marchesi, 2012 OOD - 3 45

Other code problems:

Data Clumps. If you see the same handful of data
items together, in many places, consider to create a
class holding them.

Switch Statements. The presence in the code of
“switch” statements is a very bad smell.

Message Chains. If in a method a message is sent
to an object to obtain another object, to which a
message is sent to obtain yet another object...

Middle Man. A class systematically delegates to
another class a large percentage of its behavior.
Many methods compute their result sending a
message to the same object, and returning its result.

Inappropriate Intimacy. A class makes direct
access to private variables and methods of another
class. The “friend” keyword of C++.

Alternative Classes with Different Interfaces.
Methods that do the same thing in different classes,
do not have the same name and signature.

© Michele Marchesi, 2012 OOD - 3 46

Same Name Different Meaning. Methods, in
different classes, with the same name but with
different meaning.

Law Of Demeter Violations.

Long Method Names. Long method names are
often an indication that the method is in the wrong
class.

Embedded Code Strings. Large chunks of SQL,
HTML or XML embedded in your code are difficult
to understand and maintain.

© Michele Marchesi, 2012 OOD - 3 47

Kinds of refactoring

See Fowler’s Refactoring book [Fowler 1999].

Composing Methods: The simplest and easiest
form of refactoring is changing the structure of a
method. These refactorings involve extracting a
method from one or more, inlining a method, tiding
a method acting on its parameters or temporary
variables

Moving Features Between Objects: move
methods or instance variables between classes,
extract a class from an existing one, inline a class.
It is about increasing the cohesion of classes,
reducing coupling, and putting behavior close to the
data.

Organizing Data: creating new objects, in place of
scattered fields or other structures.

Simplifying Conditional Expressions

© Michele Marchesi, 2012 OOD - 3 48

Making Methods call simpler: renaming a
method; adding or removing a parameter to/from a
method; replacing a parameter with a method call;
replacing error code with explicit throw of an
exception.

Dealing with Inheritance: pulling up or pushing
down the hierarchy an instance variable or a
method; extract a superclass, a subclass, or an
interface; replacing inheritance with delegation, or
vice-versa.

© Michele Marchesi, 2012 OOD - 3 49

Big Refactorings

Tease Apart Inheritance

This refactoring deals with a tangled inheritance
hierarchy that tries to combine different features in
a confusing way.

For instance:

After the refactoring:

© Michele Marchesi, 2012 OOD - 3 50

Tangled hierarchies are quite common, especially
when OO designers are inexperienced, or come
from procedural design.

Realizing when a hierarchy is trying to do two, or
more, jobs, and refactoring it to a cleaner structure
ensures a more understandable and simpler
program.

© Michele Marchesi, 2012 OOD - 3 51

Convert Procedural Design to Objects

This refactoring has to do with “procedural object”,
which try to do everything, using other objects as a
mere data structure.

Classes whose name includes “manager”,
“calculator”, or end with “er” are natural candidates
to be scrutinized for this kind of refactoring.

An example: “Auction” and “Bid” classes, only act
as structures (“struct”) holding their data. An
“AuctionStatusCalculator” class reads these data,
computes and returns the required information.

© Michele Marchesi, 2012 OOD - 3 52

The alternative, object-oriented way, to perform the
same computation:

Here we get rid of the procedural object, and put the
computations close to the data they operate on, that
is in classes “Auction” and “Bid”.

© Michele Marchesi, 2012 OOD - 3 53

Separate Domain from Presentation

Often, the easiest way to write GUI applications is
to embed in the code of the GUI class all the
behavior of the application.

This programming style is encouraged by many
IDEs, adopting a logical two-tier design:

the data are stored in the database

the logic is coded in the presentation classes

This situation should be refactored, separating the
domain logic from the presentation logic.

The domain classes should contain no visual code,
but all the business logic, and should not be aware
of presentation classes operating on them.

The GUI classes should contain only the logic to
deal with the user interface.

This approach facilitates future changes both to the
business and the presentation logic, and also allows
multiple presentations of the same business logic.

© Michele Marchesi, 2012 OOD - 3 54

Extract Hierarchy

This refactoring should be made when you have a
class whose methods make extensive use of
conditional “switch” statements.

The use of “switch” statements is not OO, but
should be substituted with polymorphism.

© Michele Marchesi, 2012 OOD - 3 55

	OOD Main Subsystems
	OOD Main Subsystems
	Abstraction
	Scale
	Iterative Refinement
	OO Iterative Refinement

